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Abstract

The aim of this paper is the study of propagation of acceleration waves of arbitrary shape in nematic liquid crystals.

The development of balance equation reduced to singular surface and the application of HadamardÕs theorem permit to

obtain the speeds and the conditions of propagation of the acceleration waves. Di�erential equations that describe the

modi®cations of the metric and topological properties of the wave during the propagation are deduced in function of

kinematical descriptors of the continuum and its thermodynamical state. The deduction of the coe�cients of evolution

equation for the amplitude of the jump concludes the paper. Ó 2001 Elsevier Science Ltd. All rights reserved.
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1. Introduction

In this paper, we study the propagation and the growth and decay of acceleration waves in nematic
liquid crystals. An acceleration wave is a moving surface intersecting a body, across which the accelerations
of the kinematical descriptors of the body su�er jumps of ®nite size.

Several authors have investigated the properties of acceleration waves for di�erent materials. Chen
(1968) studied the in¯uences of the thermodynamic properties of simple materials on the propagation,
growth and decay of acceleration waves. Bowen (1969) established the properties of plane acceleration and
higher order waves propagating into mixtures of elastic materials without di�usion but with a non-zero
chemical a�nity. Chadwick and Currie (1972) restricted their studies to elastic heat conductors. Wright
(1973), in an extremely detailed article, studied acceleration and higher order discontinuities waves in
simply elastic materials, with particular attention to multiple and non-uniform velocities of propagation
and to the formation of caustics. Nunziato and Walsh (1977) got some results for one-dimensional ac-
celeration waves in granular materials while Lindsay and Straughan (1979) examined the evolutionary
behaviour of acceleration waves in perfect ¯uids. Ottosen and Runesson (1991) have taken a spectral
analysis for acceleration waves in elasto-plastic materials. Recently, Mariano and Sabatini (1999a,b)
proposed a description of the propagation of acceleration waves in general continua with microstructure
(multi®eld theories of solids).
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The mathematical model of continuum with microstructure allows a general description of a wide range
of materials whose behaviour is in¯uenced by its ®ne structure. Thus, the term microstructure is usually
related to the material texture of the body or to additional structures brought about by the external envi-
ronment or by mathematical schemes. Typical examples of the latter family may be found within the set of
models describing the mechanical behaviour of one or two-dimensional structural elements such as beams,
plates and shells. Such structural elements are studied by reducing the body motion to that of a represen-
tative line or surface and of a vector ®eld on it accounting for the behaviour of the transversal sections
(Antman, 1960, 1995; Naghdi, 1960). More re®ned models of beams with a�ne structure (tubes) consider
second order tensor valued ®elds.

In general, within the setting of multi®eld theories, to each material point P two ®elds are assigned: the
former represents the placement of P in the Euclidean space, while the latter (order parameter ®eld) takes
values on a ®nite dimensional manifold M and describes all possible con®gurations of the microstructure.
In this way, the order parameter is considered as an observable quantity (in the sense that external ob-
servers should take two di�erent measures to recognise the con®guration of the body). So, interactions
should be associated to the order parameter itself. If the manifold M is endowed by a physically signi®cant
connection it is possible to describe the interactions between the elements of the microstructure by mi-
crostresses and self-forces that satisfy appropriate balance equations (Capriz, 1985, 1989).

In this paper, the order parameter ®eld describes a preferential orientation of slender molecules of ne-
matic liquid crystals and it is identi®ed with a vector ®eld on the body.

A liquid crystal is a mesomorphic state of the matter. It has the characteristic ¯uidity of liquids and
optical properties of solids. The centroids of molecules present an ordered structure like the solid lattice but
the molecules are oriented randomly. If the temperature causes changes of phase in a liquid crystal, it is said
to be thermotropic; conversely, it is said to be lyotropic if the change is given by a di�erent concentration of
solvent. In 1922, Friedel proposed a classi®cation of liquid crystals in nematics, cholesterics and smectics
with increasing complexity (Virga, 1994). The smectic phase is characterised by two-dimensional strati®ed
structures with molecules arranged in layers. The molecules of a cholesteric liquid crystal have the form of
helical springs with right-handed or left-handed wrapping (chirality): they have a notable symmetry for
which it is not possible to distinguish the head from the tail, but a mirror symmetry changes the chirality of
molecules. Finally, the term nematic comes from ancient Greek where it assumes the meaning of ``thread'';
the molecules of a nematic liquid crystal are rod-shaped with typical dimensions from 5 to 20 �A and have a
complete mirror symmetry with respect to their mid-section. For a complete description of a nematic liquid
crystal it is necessary to specify the motion of a particular point of a molecule (for example the centroid)
and its change of orientation.

With reference to acceleration waves, we found that
· The directions of propagation of an acceleration wave are the eigenvectors of a particular second order

tensor that generalises the acoustic tensor of elastic materials.
· The equation that describes the growth and the decay of the jump across the surface of the accelerations

is of BernoulliÕs type with non-constant coe�cients.
· The growth and decay of the amplitude of the jump is in¯uenced not only by the rheological properties

of material but also by the response of material ahead of the wave.
· At every point, the con®guration of the discontinuity surface depends on the macrostate, the microstate

and the temperature.

2. Field equations

As mentioned above, for a description of the kinematical behaviour of nematic liquid crystals, it is
necessary to specify the placement of each single material point P and the orientation of the molecule.
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The orientation of a molecule is speci®ed by means of a point lying on a spherical surface, on which the
antipodal points are considered as representing the same molecule owing to the mirror symmetry of nematic
molecules. This algebraic manifold is isomorphic to the projective plane P2. For each material point P of a
body B, the complete placement is given thus by a mapping k de®ned by

k : B! E3 �P2 �2:1�
such that
· the restriction of k at E3 gives the position of P in E3;
· the restriction of k at P2 characterises the orientation of the molecule centred at P.

In mechanics of ¯uids it is not important to ®x a placement as a reference con®guration but it is usual to
refer the mechanical properties of the continuum to the current con®guration. In the following, we consider
the current con®guration near to the reference con®guration, thus it is possible to apply the linear theory of
continuum mechanics. With this hypothesis, ®xed a co-ordinate system, the apparent placement of each
point of the continuum is indicated by a vector x: the ith component of which is xi; thus, apparent motion is
a time-parameterised family of placement

xi�t�: �2:2�
The time derivative of position expresses the velocity of point P

_xi � vi � dtxi: �2:3�
The acceleration is given by

ai � dtvi � d2
ttx

i: �2:4�
The order parameter ®eld identifying the direction of the molecule is de®ned by a vectorial function d�x; t�
of components

di x; t� �: �2:5�
The ijth component of the gradient of d is indicated by

Di
j � @jdi: �2:6�

The microvelocity ®eld is expressed by

_di � @tdi �2:7�
and the microacceleration is given by

�di � @2
ttd

i: �2:8�
The balance of momentum for such of kind of continuum is expressed by (see Capriz, 1989, 1995; Capriz
and Biscari, 1994; Ericksen, 1962, 1991)

@jT
j
i � bi � 0; in B

@jS
j
i ÿ zi � bi � 0;

�
�2:9�

on the bulk, while on the boundary oB�t�
T j

i mj � ti; Sj
i mj � si �2:10�

mi, being the components of the normal at the boundary and bi, the body force density, bi, the density of
body forces acting on the microstructure (e.g. electromagnetic ®eld), ti, the macroscopic traction, si, the
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generalised ``traction'' associated to the boundary data of the microstructure, T j
i , the Cauchy stress, zi, the

self-interactions between elements of the microstructures, and Sj
i , the microstress.

We may decompose the external body forces into their inertial (in) and non-inertial (ni) parts,
b � bni � bin and b � bni � bin, by using a generalised form of DÕAlambertÕs argument and we can identify
bin with ÿq�xi; q, being the mass density and bin with ÿ @ _di k dj; _dj

ÿ �ÿ �� ÿ @di k dj; _dj
ÿ �ÿ �

. k�d; _d) is the kinetic
energy that can be attributed to the microstructure and is such that k�d; 0� � 0 and k �; _d

ÿ �
is homogeneous

in _d (Capriz and Virga, 1994). As a consequence, the balance of momentum becomes

@jT
j
i � b ni� �

i � qdij�xj;

@jS
j
i ÿ zi � b�ni�

i � �@ _di k�dj; _dj��� ÿ �@di k�dj; _dj��;
:

8<: �2:11�

where dij is the Kroeneker delta. The balance of momentum of momentum provides

ei
jkT k

i � ÿei
jkdkzi � �@l�ÿei

jkdk��Sl
i ; �2:12�

where e is RicciÕs tensor.
To complete the set of the ®eld equations, the balance of mass, the balance of energy and Clausius±

Duhem inequality must be introduced.
The balance of mass is given by

_q� q@i _xi � 0 �2:13�
and the balance of energy is expressed by

_e � T j
i @jvi
ÿ ��Sj

i
_Di

j � zi
_di � @iqi; �2:14�

where e is the density of the internal energy and q the heat ¯ux of the ith component qi. The Clausius±
Duhem inequality can be written as

_Uÿ T � rv� � ÿ S � r _dÿ z � _dÿ 1

h
q � rh6 0; �2:15�

where U � eÿ gh, with g the entropy density and h the temperature. Neither heat sources nor entropy
sources are considered.

For a perfect ¯uid with microstructure, we may use the mass density as a measure of compressibility of
the liquid. Thus, U is considered as a function of the following variables:

q; #; _#; @j#; di;Di
j: �2:16�

The additional requirements that the potential should be unaltered by superposed rigid body motion of the
whole body and the symmetry properties of nematic liquid crystals allows us the substitution of @i# with the
new variable k � 1=2 @i#� � @i#� �.

For a low range of temperature it is possible to take the potential U as a summation of two terms:

U�q; #; _#; k; di;Di
j� � Q�q; #; _#; k� � E�di;Di

j�; �2:17�
where Q is a positive de®nite second order polynomial that takes into account only the energetic properties
of the liquid and the term E is the Oseen±Frank potential

E � 1
2
K11 Di

i

ÿ �2 � 1
2
K22�ek

ijd
iD j

k�2 � 1
2
K33�dildjdkDi

kDl
j� ÿ K22� � K24��dk

i d
l
j ÿ dl

id
k
j �Di

kD j
l : �2:18�
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The ®eld linked to K11 is said to be a splay ®eld and K11 is the splay modulus likely, K22 is said to be the bend
modulus, K33 the twist modulus and �K22 � K24� the saddle-splay modulus (see Virga, 1994). For a low range
of temperature the Frank constant are independent of temperature.

The application of standard arguments involving the validity of Clausius±Duhem inequality for every
choice of the velocity ®eld (see Capriz, 1989), according to constitutive choice (2.17) and (2.18), leads to

T j
i � ÿq2@qQd j

i ÿ q@lQdild j
i @j#
ÿ �

@l#� � � qD j
k@Di

k
E; �2:19�

Sj
i � @Di

j
E; �2:20�

zi � @di E; �2:21�

g � ÿ@hQ: �2:22�
The heat ¯ux vector q is related to the gradient of temperature by

qi � Kil�q; #; _#; k; di;Di
j�@l# �2:23�

with K an appropriate positive de®nite second order tensor valued function. We assume in the following the
possibility to decompose K in two terms, namely

Kil�q; #; _#; k; di;Di
j� � �Kil�q; #; _#; k� � K̂il�di;Di

j�; �2:24�
where �K depends only on the properties of liquid and K̂ the characteristics of crystals.

3. Discontinuity surfaces

Let us consider a moving surface S de®ned in Euclidean space by a function R such that

R xi; t� � � 0; i � 1; 2; 3: �3:1�
Assume also that the surface intersects the body B during a time interval �t0; t1� and we assume that R is

continuous with its ®rst derivatives. Let us de®ne for every point x belonging to S the unit normal

ni � @iR=
�������������������
dij@iR@jR

q
and the normal velocity u � _x � n given by

u � ÿ @tR�������������������
dij@iR@jR

q ; �3:2�

where @t means the time partial derivative. Let us assume that the surface S divides the body in two disjoint
sub-bodies B� with the outward normal, and Bÿ. For every ®eld ` on B�R for every x 2 S, it is possible
to de®ne the limits

`� � lim
d!0

` x� � dn; t�; `� � lim
d!0

` x; t� � d�: �3:3�

In the following we will use only the former de®nition.
The jump, across S, of the ®eld ` is the di�erence:

�`� � `� ÿ `ÿ: �3:4�
Given two ®elds ` and g, `g

� � � ÿ `� � g� �� g� `� � � `� g
� �

(for a detailed treatment of discontinuity surfaces
see Manacorda (1979); �Silhav�y (1997)).
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Acceleration waves are discontinuity surfaces characterised by

�xi� � 0; �di� � 0; b _#c � 0; q� � � 0; b _xic � 0; � _di� � 0; �D j
i � � 0; �3:5�

while bd2
ttx

ic 6� 0 and b@2
ttd

ic 6� 0.
If the heat ¯ux vector is continuous across the surface S, the wave is homothermal; for this kind of wave,

the gradient of temperature and its ®rst time derivative are continuous across S, namely

b _#c � 0; @i#� � � 0: �3:6�
In the treatment of discontinuity waves, Hadamard theorem plays a fundamental role; it links in fact the

jump of the gradient of a function with the gradient of the jump and time derivative of the same function.
More precisely,

�@i`� � @i�`� ÿ ni

u
@t`� �: �3:7�

In what follows we assume that the kinetic energy pertaining the order parameter ®eld is quadratic, i.e.
there exists a second order tensor J such that

k�d; _d� � 1
2
_dJ _d: �3:8�

J accounts for the characteristics of inertia of the slender molecules.
The balance equations, reduced at the discontinuity surfaces, assume the following form:
conservation of mass:

� _q� � ÿqbvi
ic; �3:9�

conservation of momentum:

@jT
j
i

� � � qdij _v j
h i

; �3:10�

conservation of micromomentum:

@jS
j
i

� � � Jij��dj�; �3:11�
conservation of energy:

@iqi� � � � _e�: �3:12�

4. Propagation of homothermal acceleration waves

The problem of propagation and growth of an acceleration wave in a thermoelastic continuum with
microstructure and in particular in a liquid crystal is not so simple because in its formulation a great
number of variables come in. It is possible to divide such an analysis into three steps. At the ®rst step it is
possible to determine the velocities and the directions of propagation of the surface within the medium, at
the second one it is necessary to analyse the variation of the wave con®guration during the propagation
with particular attention to curvature tensor of the surface and it is possible to write a di�erential equation
ruling the growth and the decay of the amplitude of acceleration jumps across the surface, during the
motion.
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By applying Hadamard theorem to Eqs. (3.9)±(3.12) one obtains

� _q� � ÿq�@i _xi�;
@jT

j
i

� � � qdij� _v j�;
@jS

j
i

� � � Jij��dj�;
q#� _g� � @iqi� �:

8>>>><>>>>: �4:1a±d�

The application of Hadamard theorem to Eq. (4.1) gives

q� � � q
ni

u
��xi�; �4:2�

� _T j
i �nj � ÿqdiju��xj�; �4:3�

� _Sj
i �nj � ÿJij��dj�: �4:4�

From the fourth equation, with the application of homothermal conditions, it follows that

uq#� _g� � ÿ� _qi�ni: �4:5�
Now, by developing the time derivative of the stress tensor, namely

_T i
j � @qT i

j _q� @dk T i
j
_dk � @D j

l
T i

j
_D j

l � @#T i
j @t#� � � @ _#T i

j @
2
tt#

ÿ �� @kT i
j @tk� � �4:6�

and evaluating the jump across the discontinuity surface, we obtain

b _T i
j c � @qT i

j � _q� � @Dk
l
T i

j b _Dk
lc � @ _#T i

j @2
tt#

� �
: �4:7�

By using Hadamard theorem, in Eq. (4.7) the term _D j
i

� �
may be substituted by ÿ�ni=u� @2

ttd
j

� �
.

Applying the same procedure to Eq. (4.1c,d) and making use of relations (2.20) and (2.21), we get the
following system:

A u� � � _n� ÿ quI� _n� � 0 �4:8�
collecting in a single vector the unknowns with the following position: b _n1c � _q� �, for i � 2; 3; 4 b _nic � b�xic,
for i � 5; 6; 7; b _nic � b@2

ttd
ic and b _n8c � b@2

tt#c, with:

A1i � ÿq
ni

u
; i � 2; 3; 4; �4:9�

Ai1 � ÿf�2q@qQ� q2@2
qqQ�d p

i � �q@2
kqQ� @kQ�d prdq

i @r#@q#� d p
i D j

qDk
r�K11d

q
j d

r
k � K22eq

mje
r
lkdmdl

� K33dikd
q
l d

r
mdmdl ÿ �K22 � K24��dq

j d
r
k ÿ dr

jd
q
k��g

np

u
; i � 2; 3; 4; �4:10�

Aij � ÿq
npnq

u
d p

i Dr
q�K11d

q
j d

r
k � K22eq

mje
r
lkdmdl � K33dikd

q
l d

r
mdmdl

ÿ K22� � K24� �dq
j d

r
k ÿ dr

jd
q
k��; i; j � 2; 3; 4; �4:11�

Aij � ÿq
ninr

u
Dk

q�K11d
q
kd

r
j � K22eq

mker
ljd

mdl � K33djkd
q
l d

r
mdmdl ÿ K22� � K24� �dq

kd
r
j ÿ dr

kd
q
j ��;

i � 2; 3; 4 j � 5; 6; 7; �4:12�
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Ai4 � np

��
ÿ @2

q _#
Q� nr

u
�@2

qkQ@r#� @2
kkQ@r#�

�
d p

i ÿ q@2
k _#

Qd prdq
i @r#@q#

� nm

u
@2

kkQ@r#@m#
ÿ � q@rQ

�
d prdq

i @q#
�
; i � 2; 3; 4; �4:13�

Ai1 � K11d
q
i d

r
k

ÿ � K22eq
mie

r
lkdmdl � K33dikd

q
l d

r
mdmdl ÿ K22� � K24� dq

i d
r
k

ÿ ÿ dr
i d

q
k

��
D j

q

nr

u
; i � 5; 6; 7;

�4:14�

Aij � ÿq K11d
q
i d

r
j

�
� K22eq

mie
r
ljd

mdl � K33dijd
q
l d

r
mdmdl ÿ K22� � K24� dq

i d
r
j

�
ÿ dr

i d
q
j

�� nrnq

u
;

i; j � 5; 6; 7; �4:15�

A81 � qu#@qQÿ ni

u
@qKir@r#; �4:16�

A8i � njnr

u2
@Di

r
Kjp@p#; i � 5; 6; 7; �4:17�

A88 � ÿq@2
# _#

W� ni

u
@ _hKip@p#ÿ ninq

u2
Kiq; �4:18�

where I � diag�0; I;J; 0�, I is the identity matrix in E3.

Proposition 4.1. The velocities of propagation of an homothermal acceleration wave are the values of u that
allow the appearance of non-trivial solutions of Eq. (4.9), to each non-trivial solution a direction of propagation
in the space of the unknowns corresponds, the projection of such direction in the sub-spaces of jumps of
macroaccelerations and microaccelerations provides the directions of propagation of the discontinuities in the
Euclidean space.

Proof. From Rouch�e theorem, the homogeneous system (4.9), admits non-trivial solutions if and only if

det A u� �� ÿ quI� � 0: �4:19�
Moreover we may write

� _n� �
X

L

rLrL; �4:20�

where rL is the amplitude of the jump and rL is a unit eigenvector. L marks the Lth velocity of propagation.
Taking out the singles parts of vector, we obtain the direction of propagation of mechanical and thermal
accelerations in the Euclidean space, and similarly, the jumps of the mass velocity.

Eq. (4.19) is the characteristic equation of the system (4.8). �
A general result, which is useful in deriving the following developments, is the lemma of bicharacteristic

directions.

Lemma 4.1. (Courant and Hilbert, 1962). At a ®xed point x, consider the characteristic matrix K of a
hyperbolic system n� n of partial di�erential equations and take K as a function of n � rR= rRj j. Assume
also that rank �K� � nÿ 1. Then, the relation that gives the di�erentiation along the rays of bicharacteristics
is

x0 � l t oK
on

r; �4:21�
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where the prime denotes di�erentiation along the ray with respect to the parameter on the curve, and l and r are
the left and the right vectors belonging to the kernel of the matrix K.

5. Motion of a singular surface

Usually, during the propagation, the wave front is subjected to changes in shape. The study of evolution
of the shape of wave front plays a fundamental role where connected with the evolution of jumps.

Each surface solution of Eq. (4.19) may be expressed in parametric form by its Gaussian co-ordinates
and the parameter z3 � t ÿ t0 as

x � x̂ z1; z2; z3
ÿ �

; x 2 S�t� \ B: �5:1�

The gradient of previous transformation is given by

ox

ozp
� ap p � 1; 2; �5:2�

where ap are vectors of covariant basis of the singular surface and

ox

oz3
� b �5:3�

is the ray velocity.

The Jacobian determinant of the transformation (5.1) is de®ned by

J � det
ox

oz

� �
� a1� � a2� � b � a1=2v �5:4�

being 1

v � uN �x; n; q; d;D; #; _#; k; t�; �5:5�
the velocity of propagation of the discontinuity surface. From Eq. (5.5), the following proposition follows:

Proposition 5.1. If propagation of the discontinuity surface occurs in a homogeneous material, deformed ho-
mogeneously with uniform temperature and order parameters, the velocity of propagation of a wave front is
constant and the surface propagates along straight trajectories.

By derivation of Eq. (5.5), the variation of velocity of propagation along a ray is expressed by

v0 � dv
dz3
� dv

dt

� ouN

ot
� ouN

on

on

ox

ox

ot
� ouN

oq
oq
ox

ox

ot
� ouN

od

od

ox

ox

ot
� ouN

oD

oD

ox

ox

ot
� ouN

o#
o#
ox

ox

ot
� ouN

o _#

o _#

ox

ox

ot

� ouN

ok
ok
ox

ox

ot
� ouN

ot
� vn � ruN : �5:6�

1 In what follows, low capital indexes are enumerative only, they must not be summed.
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The use of EulerÕs formula for the derivative of a determinant, namely J 0 � J tr oz=ox� � ox0=oz� �� �, implies the
following proposition:

Proposition 5.2. The Jacobian determinant of the transformation (5.1) varies along a ray in accordance with
the following expression:

J 0

J
� d lgJ� �

du3

� tr
o2uN

onox
� 1
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where B is the surface curvature tensor of S

B � Bp
qap 
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 ap: �5:8�

To obtain Eq. (5.7) we derive Eq. (5.5) with respect to ray parameter u3 and, using expression (5.6).
Therefore, when the analytic expressions of components of curvature tensor B are known, as functions

of the ray parameter, Eq. (5.7) may be solved by quadrature.
A direct derivation of the vectors of covariant basis gives us
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Proposition 5.3. The area element varies, during the motion, according to the following expression:
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Eq. (5.10) may be obtained from a di�erentiation of de®nition J � a1=2v and the use of (5.6).

As above mentioned, the characterisation of the wave front shape may be expressed with the component of
surface curvature tensor B. By direct calculation, we obtain the following proposition:

Proposition 5.4. The variation along a ray of each component of surface curvature tensor is subjected to the
following restrictions:
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To characterise locally the wave front, it is su�cient to de®ne the invariants of the surface curvature tensor,
i.e. the mean curvature b � 1=2 trB and the Gaussian curvature B � det B. They change in accordance with
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6. The evolution equation of the amplitude

If the values of the jumps of macroacceleration and microacceleration, second time derivative of the
temperature and the time derivative of mass density, are assigned at the initial wave front, it is possible to
deduce an equation regulating the variation of the acceleration jumps during the propagation.

To obtain such an evolution equation, we follow the usual procedure for the solution of hyperbolic
system, presented for linear systems in Courant and Hilbert (1962) and extended by Varley and Cumb-
erbatch (1965) to quasilinear systems.
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However, the starting point for the determination of the evolution equation is the calculation of the time
derivatives of balance equations across the surface S, namely

��q� � ÿ��q@i _xi���
�@j

_T j
i � � dij��q�xj���

�@j
_Sj

i � ÿ �_zi� � Jij� vd j�
��e� � ��@iqi���

8>>>><>>>>: �6:1�

and of the time derivative of the Fourier law (2.23)

� _qi� � ��Kij�q; #; _#; k; dk;Dk
l �@j#���: �6:2�

Proposition 6.1. The transport equation of jump is expressed by the Bernoulli equation

r0 � b z3
ÿ �

r2 ÿ c z3
ÿ �

r; �6:3�
where r is the scalar amplitude of the jumps of _n and the coe�cients b(z3) e c(z3) pick up the whole ther-
modynamic state ahead of the wave, the rheological properties of material and the instantaneous shape of the
wave front.

Proof. By evaluating the explicit expression of the time derivatives in Eq. (6.1) and applying Hadamard
theorem at each jump of spatial derivatives, we obtain a system that may by written in compact form as
follows:

A� ÿ quI�ij �nj
h i
� Cij

_nj
h i
�Bijk

_nj
h i

_nk
h i

� ~@ @nAij� _nj�
� �

� 0; �6:4�

where the matrices A and I are given in Section 4, and the tensorial coe�cients B and C are in Appendix
A. The symbol ~o means partial derivative with respect to the ith co-ordinate of the terms A, n=u, _n

� �
.

Recalling the position _n
� � � rLrL, we may assume �n

� � �PMcM rM where cM marks the jumps of time de-
rivatives of _n. Consequently

A� ÿ quI�
X

M

cM rM � rLCrL � r2
LBrL 
 rL � ~@ @nArLrL� � � 0; �6:5�

where the terms cL appear with rL. Nevertheless, with a left scalar multiplication for lL we eliminate the
indetermination due to presence of cL, because lL Aÿ quI� � � 0, and we obtain the scalar equation

rLlL � CrL � r2
LlL �BrL 
 rL � rÿ1

L @a lL � @nArLr
2
L

ÿ � � 0: �6:6�
Given a single mode of propagation, we may apply the lemma on bicharacteristic directions, expressed in
Lemma 4.1, and may write, eliminating the unnecessary lower index L,

cr2 � br3 � @a q _n0r2
� �

� 0; �6:7�

where

c � l � Cr; �6:8�

b � l �B�r
 r�: �6:9�
Using EulerÕs formula for the derivative of a determinant, we obtain rÿ1@a�q _n0r2� � Jr� �ÿ1 qJr2� �0, where
the symbol � �0 notes the derivation with respect to the ray parameter. Eq. (6.7) may be reduced to the
normal form (6.3) with the following positions:
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b z3
ÿ � � ÿ b

2q
; �6:10�

c z3
ÿ � � c

2q

 
� 1

2

qJ� �0
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!
: �6:11�

The coe�cient b depends on the rheological properties of material in which the wave propagates (see
Appendix A). In this particular case, it depends on the mass density, the FranckÕs constants and the thermal
conductivity tensor, while coe�cient c picks up the response of material ahead of the wave and the in-
stantaneous con®guration of the wave front.

If the initial amplitude r0 is assigned and the whole thermodynamic response of the material is known, it
is possible to integrate Eq. (6.3). The solution is expressed by

r z3
ÿ � � e

ÿ
R z3

0
c 1� � d1

1
r0
ÿ R z3

0
b 1� �eÿ

R 1

0
c �1� � d�1

: �6:12�

A full description of local and global behaviour of Eq. (6.3) may be found in Bailey and Chen (1971a,b).
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Appendix A

Coe�cients of tensors of Eq. (6.3)
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